百分数总结
1.百分数总结~~
百分数是表示一个数是另一个数的百分之几的数,也叫百分率或百分比。百分数通常不写成分数的形式,而采用符号“%”(叫做百分号)来表示。百分数在工农业生产、科学技术、各种实验中有着十分广泛的应用,特别是在进行调查统计、分析比较时,经常要用到百分数。
用处
百分数一般有三种情况: ①100%以上,如:增长率、增产率等。 ②100%以下,如:发芽率、成长率等。 ③刚好100%,如:正确率,合格率等。
百分数的意义
百分数只可以表示分率,而不能表示具体量,所以不能带单位。 百分比虽以100为分母,但分子可以大于100,如200%即代表原本数字的2倍。举例如一间公司去年纯利100万元,今年的纯利为120万元,则可以表示成“今年的纯利比去年增加20%”,亦可写成“今年的纯利是去年的120%”,但这种写法较少使用。百分比有时可能造成误会,不少人认为一个百分比的上升会被相同下降的百分比所抵消,例如从100增加50%,等于100+50,即150。而从150下降50%则是150-75,等于75。最终结果是小于原本的数字100。百分数的分子还可以是小数。 百分数概念的形成应以学生实际生活中的事例或工农业生产中的事例引入.例如,一年级有学生100人,其中女同学有47人,女同学即占全年级人数的百分之四十七,写作47%.又如,二年级有学生200人,其中女同学有100人,女同学即占全年级人数的百分之五十.在这两个例子中,两个年级的人数都是“标准量”,而女同学的人数为“比较量”.在百分数应用题的教学中要抓住 比较量÷标准量=百分率(百分数)这一数量关系式进行分析.
日常应用
每天在电视里的天气预报节目中,都会报出当天晚上和明天白天的天气状况、降水概率等,提示大家提前做好准备,就像今天的夜晚的降水概率是20%,明天白天有五~六级大风,降水概率是10%,早晚应增加衣服。20%、10%让人一目了然,既清楚又很简练。 随着现在科技的飞速发展,现在每个人几乎都配备手机,款式多种多样。伦敦大学皇家学院心理学家格伦.威尔森研究证明:老是低着头看短信,会导致工作效率低下,工作人员的大脑反应能力也会减慢,经常看短信的人智商会下降10%,以百分数的形式再次证明了手机虽为人们提供了方便,但对人体健康却十分有害。 我国是世界上最大的节能灯生产国,但产品80%出口,国内使用量严重偏低。 针对2001年普通高校应届本、专科生,已签约应届大学生中47.1%的人签约月薪在1500元以下。 一项网络调查显示,有85.63%的网民,近几年一直都没读过名著。此外,8.98%的网民近十年没读过名著,还有6.75%的网民表示从来就没读过名著。 药水比例时也会碰到百分数,比如10%。
2.百分数总结~~
百分数是表示一个数是另一个数的百分之几的数,也叫百分率或百分比。百分数通常不写成分数的形式,而采用符号“%”(叫做百分号)来表示。百分数在工农业生产、科学技术、各种实验中有着十分广泛的应用,特别是在进行调查统计、分析比较时,经常要用到百分数。
用处
百分数一般有三种情况: ①100%以上,如:增长率、增产率等。 ②100%以下,如:发芽率、成长率等。 ③刚好100%,如:正确率,合格率等。
百分数的意义
百分数只可以表示分率,而不能表示具体量,所以不能带单位。 百分比虽以100为分母,但分子可以大于100,如200%即代表原本数字的2倍。举例如一间公司去年纯利100万元,今年的纯利为120万元,则可以表示成“今年的纯利比去年增加20%”,亦可写成“今年的纯利是去年的120%”,但这种写法较少使用。百分比有时可能造成误会,不少人认为一个百分比的上升会被相同下降的百分比所抵消,例如从100增加50%,等于100+50,即150。而从150下降50%则是150-75,等于75。最终结果是小于原本的数字100。百分数的分子还可以是小数。 百分数概念的形成应以学生实际生活中的事例或工农业生产中的事例引入.例如,一年级有学生100人,其中女同学有47人,女同学即占全年级人数的百分之四十七,写作47%.又如,二年级有学生200人,其中女同学有100人,女同学即占全年级人数的百分之五十.在这两个例子中,两个年级的人数都是“标准量”,而女同学的人数为“比较量”.在百分数应用题的教学中要抓住 比较量÷标准量=百分率(百分数)这一数量关系式进行分析.
日常应用
每天在电视里的天气预报节目中,都会报出当天晚上和明天白天的天气状况、降水概率等,提示大家提前做好准备,就像今天的夜晚的降水概率是20%,明天白天有五~六级大风,降水概率是10%,早晚应增加衣服。20%、10%让人一目了然,既清楚又很简练。 随着现在科技的飞速发展,现在每个人几乎都配备手机,款式多种多样。伦敦大学皇家学院心理学家格伦.威尔森研究证明:老是低着头看短信,会导致工作效率低下,工作人员的大脑反应能力也会减慢,经常看短信的人智商会下降10%,以百分数的形式再次证明了手机虽为人们提供了方便,但对人体健康却十分有害。 我国是世界上最大的节能灯生产国,但产品80%出口,国内使用量严重偏低。 针对2001年普通高校应届本、专科生,已签约应届大学生中47.1%的人签约月薪在1500元以下。 一项网络调查显示,有85.63%的网民,近几年一直都没读过名著。此外,8.98%的网民近十年没读过名著,还有6.75%的网民表示从来就没读过名著。 药水比例时也会碰到百分数,比如10%。
3.百分数的整理
分数百分数整理复习 (2008-09-30 19:48:11) 标签:教育 江苏省常熟市梅李中心小学 朱永坤执教 江苏省常熟市教育局教研室 徐建文评析 教学目标 1.使学生进一步理解和掌握分数、百分数应用题的数量关系和解题方法,沟通分数、百分数应用题之间的联系,通过学生自主建构使知识系统化。
2.提高学生分析、推理、判断能力以及解决简单的实际问题的能力。 3.培养学生收集、处理信息的能力,使学生体会到数学的价值。
教学过程 一、课前观察 1.欣赏:美丽的千岛湖和农夫山泉广告 2.观察: 每位同学的桌子上都摆放着一瓶来自我国最大的矿泉水生产基地浙江千岛湖的农夫山泉矿泉水,请你仔细观察这瓶矿泉水。 3.师:你从中获取了哪些信息? 生1:这个瓶子是一个近似圆柱体。
生2:广告中说如果你喝一瓶矿泉水,那就为中国申奥捐出一分钱。 生3:这瓶矿泉水是550毫升。
生4:我用尺测量了一下瓶子,瓶中水的高度约20厘米。 【评:看广告片、观察矿泉水,引导学生从中收集数据,获取数学信息,培养了学生的数学意识】 二、整理复习 1.猜一猜。
师:老师喝去了一些矿泉水,还剩下这些(举起手中的瓶子),请你猜一猜,还剩下这瓶水的几分之几? 生1:1/4。 生2:1/5,也可能是1/6。
…… 师:你有什么办法来证明自己猜对了吗? 生1:可以先测量剩下的水有多少,再计算还剩几分之几。 生2:可以先称出剩下的重几克,再计算出剩下的占整瓶水的几分之几。
师:你认为哪一种办法好呢? 生:测量。 师追问:测量什么?用什么测量? 生:测量剩下的水的高度。
学生操作后得出:满瓶矿泉水的高度是20厘米,剩下水的高度是4厘米,剩下的占这瓶水的了1/5(20%),喝去了这瓶水的4/5(80%)。 师:想法很好,但如果要求比较精确,怎么办呢? 生:可以用量杯量。
教师示范操作,用量杯量后,看一下是多少毫升? 生:110毫升。 师:现在谁能计算出还剩下几(百)分之几? 生:110÷550=1/5。
师:那么喝下几(百)分之几?怎样计算? 生:4/5,用1-1/5,也可以用(550-110)÷550。 电脑显示: ① ② ③ 一瓶水550毫升 喝去440毫升 剩下110毫升 ④ ⑤ ⑥ “1” 4/5(80%) 1/5(20%) 小结:求喝下几(百)分之几和剩下几(百)分之几…… 这就是我们已经学过的求一个数是另一个数的几(百)分之几的应用题,解答这类题的关键在于弄清谁与谁比,把谁看作单位“1”。
【评:通过猜、测、量、算,让学生在动手与动脑的过程中获得数学活动的经险,巧妙地复习了求一个数是另一个数的几(百)分之几的应用题】 2.编一编。 师:刚才我们通过观察、讨论、计算,得到了以下两组信息,现在老师要求大家从上述两组信息中各选择一条信息,再提出一个问题,组成一道我们已经学过的分数(百分数)应用题。
学生交流,教师调控。 如①+⑤喝去了多少毫升?还剩多少毫升? ①+③还剩多少毫升?喝去多少毫升? ②+⑤这瓶矿泉水多少毫升? 师:你认为解答分数、百分数应用题的关键是什么? 生:确定单位“1”,找出与几(百)分之几的对应数量,然后联系一个数乘以分数、百分数的意义列出数量关系,再列式计算。
【评:让学生自己选择信息并提出问题,组合成分数、百分数应用题后自己解答的过程,不仅使学生进一步理解了这些应用题的结构,掌握了解题方法,而且沟通了各类应用题之间的联系,有利于学生建构自己的知识系统】 三、应用拓展 1.算一算。 ①工厂生产的矿泉水合格率是99.8%。
如果有80瓶是不合格产品,那么这一天共生产了多少瓶矿泉水? ②矿泉水现在每瓶成本1.5元,比原来降低了25%,如果工厂按每天生产20000瓶计算,可以节约成本多少元? ③工厂降低成本后,为答谢广大顾客,决定开展“买四赠一”活动。如果矿泉水原来每瓶卖2元,那么优惠了百分之几? 【评:在算一算的过程中,学生当了回质检员、成本核算员和销售员,他们俨然是在为公司解决生产和销售中的实际问题,小小的心灵多了些质量意识、成本意识和责任意识】 2.想一想。
学校组织大家去春游,如果我班同学每人各自买一瓶矿泉水,单价是2元。如果整箱买:小箱12瓶可打九折,大箱20瓶可打八折。
请你们小组合作,设计购买方案。 【评:创设开放性情境,为学生提供信息,并让学生选择相关信息,设计购买方案,给学生提供了广阔的思维空间,渗透了问题解决策略多样化的思想,培养了学生的创新意识,并使不同层中的学生都能获得学习成功的体验】 四、全课小结:略。
总评:本保一改传统的教学模式,走出了一条应用题整理也复习的新路子。主要表现在以下方面: 1.创造性地组织了复习内容。
全课以矿泉水为主线,通过创设“喝矿泉水——算矿泉水——生产矿泉水——销售矿泉水——购买矿泉水”等一系列情境,将复习内容巧妙地贯穿其中,构建了由浅入深、由易到难这样一条较为完整的复习路径。课中所提供的学习材料来自现实生活.如“买四赠一”、“春游时购买矿泉水”等,使学生感受到数学与生活的密切联系,体会到数学的应用价值。
2.十分关注学生的整体发展。 整理和复习,理应关注“双基”,但在重视学生知识、技能的同时,更。
4.【小学六年级分数、百分数应用题类型总结】
百分数1、求一个数是另一个数的百分之几.一个数÷另一个数*100%2、求一个数比另一个数多百分之几.(一个数-另一个数)÷另一个数*100% 可概括为:(大数-小数)÷小数*100%3、求一个数比另一个数少百分之几.(另一个数-一个数)÷另一个数*100% 可概括为:(大数-小数)÷大数*100%4、求一个数的百分之几是多少.单位“1”的量*百分之几=百分之几对应量5、求比一个数多百分之几的数是多少.单位“1”的量*(1+百分之几)=(1+百分之几)对应量6、求比一个数少百分之几的数是多少.单位“1”的量*(1-百分之几)=(1-百分之几)对应量7、已知一个数的百分之几是多少,求这个数.百分之几对应量÷百分之几=单位“1”的量8、另外还有“已知比一个数多(少)百分之几的数是多少,求这个数”,其解法类似于第7类,还可以根据相关条件列方程解答.简单应用题的类型1、简单应用题:是指用一步计算解答的应用题.2、简单的加法应用题.(1)根据加法意义,求两个数的和.(2)求比一个数多几的数.3、简单的减法应用题.(1)根据减法意义,求剩余.(2)求两数的相差数.(3)求比一个数少几的数.4、简单乘法应用题.(1)求几个相同加数的和.(2)求一个数的几倍(几分之几)是多少.5、简单的除法应用题.(1)已知两个因数的积与其中一个因数,求另一个因数.(2)把一个数平均分成若干份,求每份是多少.(3)求一个数里包含几个另一个数.(4)求一个数是另一个数的几倍(或几分之几).(5)已知一个数的几倍(或几分之几)是多少,求这个数.复合应用题的类型及解法1、“归一”问题:此类应用题中暗含着单一量不变,文字叙述中多带有类似“照这样计算”的字样,其解题的关键是从已知的一种对应量中求出单一量(即归一),再以它为标准,根据题目要求算出所求量.2、“归总”问题:此类题中暗含着总量不变,即乘积不变.其解题的关键是先求出总数(即归总),再根据总数算出所求量.3、行程问题:根据速度、时间和路程之间的关系,计算相向、相背或同向运动的问题,称为行程问题.其基本的数量关系式为:速度*时间=路程,路程÷时间=速度,路程÷速度=时间.相遇问题,即同时相向而行并相遇或(同时背向而行);速度和*(相遇)时间=总路程.追及问题,即同时同向而行,速度慢的在前,速度快的在后:速度差*追及时间=路程差.4、工程问题:把工作总量看作单位“1”,工作效率用单位时间内完成工作总量的“几分之一”表示.根据工作总量、工作效率、工作时间其中两种量求出第三种量.数量关系式为:工作效率*工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率5、分数应用题:关键是找标准量,即单位“1”.若单位“1”已知,用乘法计算;若单位“1”未知,用除法计算.求甲比乙多(或少)几分之几(百分之几)的解题规律:(甲-乙)÷乙已知甲比乙多(或少)几分之几(百分之几),求甲的解题规律:乙*(1+几分之几) 乙*(1-几分之几)已知甲比乙多(或少)几分之几(百分之几),求乙的解题规律:甲÷(1+几分之几) 甲÷(1-几分之几)利息=本金*利率*时间 (5)应纳税额=应纳税所得额*税率。
5.百分数知识整理
【什么是百分数】 表示一个数是另一个数的百分之几的数,叫做百分数.百分数也叫百分率或百分比 . 【百分数与分数的意义】 百分数与分数的意义不是完全相同。
分数可以表示一个数占单位“1”的几分之几,还可以表示一个数量,百分数不能表示数。所以,百分数不能带单位。
【百分数的意义】分数可以表示分率,也可以表示一个数。当表示一个数时,它可以带计量单位名称(这才是二者的主要不同之处);当表示分率时,它的后面不能带任何单位名称。
百分数只表示百分率,它的后面不能带任何计量单位名称。 百分数表示一个数是另一个数的百分之几的数.百分数也叫做百分率或百分比.百分数通常不写成分数的形式,而采用符号“%”(叫做百分号)来表示.如 写为41%,1%就是0.01 .由于百分数的分母都是100,也就是都以1%作单位,便于比较,因此,百分数在工农业生产、科学技术、各种实验中有着十分广泛的应用.特别是在进行调查统计、分析比较时,经常要用到百分数. 百分比虽以100为分母,但分子可以大于100,如200%即代表原本数字的2倍。
举例如一间公司去年纯利100万元,今年的纯利为120万元,则可以表示成“今年的纯利比去年增加20%”,亦可写成“今年的纯利是去年的120%”,但这种写法较少使用。百分比有时可能造成误会,不少人认为一个百分比的上升会被相同下降的百分比所抵消,例如从100增加50%,等于100+50,即150。
而从150下降50%则是150-75,等于75。最终结果是小于原本的数字100。
百分数的分子还可以是小数。 百分数概念的形成应以学生实际生活中的事例或工农业生产中的事例引入.例如,一年级有学生100人,其中女同学有47人,女同学即占全年级人数的百分之四十七,写作47%.又如,二年级有学生200人,其中女同学有100人,女同学即占全年级人数的百分之五十( ).在这两个例子中,两个年级的人数都是“标准量”,而女同学的人数为“比较量”.在百分数应用题的教学中要抓住 =百分率(百分数)这一数量关系式进行分析. 【百分数在日常生活中的应用】 每天在电视里的天气预报节目中,都会报出当天晚上和明天白天的天气状况、降水概率等,提示大家提前做好准备,就像今天的夜晚的降水概率是20%,明天白天有五~六级大风,降水概率是10%,早晚应增加衣服。
20%、10%让人一目了然,既清楚又简练。 随着现在科技的飞速发展,现在每个中龄人都配备手机,款式多种多样。
伦敦大学皇家学院心理学家格伦.威尔森研究证明:老是低着头看短信,会导致工作效率低下,工作人员的大脑反应能力也会减慢,经常看短信的人智商会下降10%,以百分数的形式再次证明了手机虽为人们提供了方便,但对人体健康却十分有害。 这是我在生活中查找出有关百分数的资料。
相信只要细心观察,你也会发现百分数在生活中无处不在。 80% 我国是世界上最大的节能灯生产国,但产品80%出口,国内使用量严重偏低。
47.1% 针对2001年普通高校应届本、专科生,已签约应届大学生中47.1%的人签约月薪在1500元以下。 85.53% 一项网络调查显示,有85.53%的网民,近几年一直没读过名著。
此外,8.58%的网民近十年没读过名著,还有6.75%的网民表示从来就没读过名著。 【百分数应用题】 百分数应用题有下列三种计算问题:①求一个数是另一个数的百分之几,例:求45是225的百分之几,即 =20%.②求一个数的百分之几是多少.例:求 2.2的 75%是多少.即 2.2*75%=1.65.③已知一个数的百分之几是多少,求这个数.例:已知一个数的75%是165,求这个数.即165÷75%=220. 表示一个数是另一个数的百分之几的数.百分数也叫做百分率或百分比.百分数通常不写成分数的形式,而采用符号“%”(叫做百分号)来表示.如 写为41%,1%就是 .由于百分数的分母都是100,也就是都以1%作单位,便于比较,因此,百分数在工农业生产、科学技术、各种实验中有着十分广泛的应用.特别是在进行调查统计、分析比较时,经常要用到百分数. 扩展提高: 1.表示一个数是另一个数的千分之几的数,叫做千分数,千分数也叫千分率。
与百分数一样,千分数也有千分号。 2.百分数和分数的内在联系:都可以表示两个量的倍比关系。
3.百分数和分数的区别:(1)意义不同,百分数只表示两个数的倍比关系,不能带单位名称;分数既可以表示具体的数,又可以表示两个数的关系,表示具体数时可带单位名称。(2)百分数的分子可以是整数,也可以是小数;而分数的分子不能是小数只是除0以外的自然数;百分数不可以约分,而分数一般通过约分化成最简分数。
(3)任何一个百分数都可以写成分母是100的分数,而分母是100的分数并不都具有百分数的意义。(4)应用范围的不同,百分数再生产和生活中,常用于调查、统计、分析和比较,而分数常常在计算、测量中的不到整数结果时使用。
6.百分数知识整理
最低0.27元/天开通百度文库会员,可在文库查看完整内容>
原发布者:风中花雨石
百分数知识点整理一、百分数的意义:表示一个数是另一个数的百分之几。百分数也叫做百分率、百分比。(千分数:表示一个数是另一个数的千分之几)二、百分数和分数的区别:1.意义不同:百分数只表示两个数的倍比关系或部分与整体的数量关系,不能表示具体的数量,所以不能带单位; 分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。2.百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,只能是除0以外的自然数。3.百分数是特殊的分数,百分数的分母都是100,百分数的计数单位都是1/100.三、百分数与小数的互化:1.小数化成百分数:方法一:把小数点向右移动两位,同时在后面添上%。方法二:把小数化成分母是10、100、1000……的分数(看小数有几位小数,一位用10作分母,两位用100做分母,三位用1000做分母),再把这个分数化成分母是100的分数,再转换成百分数。例如:0.375=375/1000=37.5/100=37.5%;3.6=36/10=360/100=360%.方法三:把小数的分母看做1,利用分数的基本性质,分子分母同时扩大100倍就可以化成百分数。也可以用这个小数直接*100/100化成百分数。例如:0.12====12%或者0.12*===12%2.百分数化成小数:方法一:把小数点向左移动两位,同时去掉%方法二:变成除法直接除出小数。例如:1.03/100=1.03÷100=0.0103;50/100=50÷100=0.5 四、百分数的和分数的互化:1.百分数化成分数:先把百分数化成分数形式,再约分,结果要约成最

