• 首页>范文 > 范文
  • 数学2—3知识点总结

    1.人教A版 数学必修2 第2、3章知识点总结

    第二章 直线与平面的位置关系

    2.1空间点、直线、平面之间的位置关系

    2.1.1

    1 平面含义:平面是无限延展的

    2 平面的画法及表示

    (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)

    (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等。

    3 三个公理:

    (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内

    符号表示为

    A∈L

    B∈L => L α

    A∈α

    B∈α

    公理1作用:判断直线是否在平面内

    (2)公理2:过不在一条直线上的三点,有且只有一个平面。

    符号表示为:A、B、C三点不共线 =>; 有且只有一个平面α,

    使A∈α、B∈α、C∈α。

    公理2作用:确定一个平面的依据。

    (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

    符号表示为:P∈α∩β =>;α∩β=L,且P∈L

    公理3作用:判定两个平面是否相交的依据

    2.1.2 空间中直线与直线之间的位置关系

    1 空间的两条直线有如下三种关系:

    相交直线:同一平面内,有且只有一个公共点;

    平行直线:同一平面内,没有公共点;

    异面直线: 不同在任何一个平面内,没有公共点。

    2 公理4:平行于同一条直线的两条直线互相平行。

    符号表示为:设a、b、c是三条直线

    a∥b

    c∥b

    强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

    公理4作用:判断空间两条直线平行的依据。

    3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补

    4 注意点:

    ① a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为简便,点O一般取在两直线中的一条上;

    ② 两条异面直线所成的角θ∈(0, );

    ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;

    ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;

    ⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

    2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系

    1、直线与平面有三种位置关系:

    (1)直线在平面内 —— 有无数个公共点

    (2)直线与平面相交 —— 有且只有一个公共点

    (3)直线在平面平行 —— 没有公共点

    指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示

    a α a∩α=A a∥α

    2.2.直线、平面平行的判定及其性质

    2.2.1 直线与平面平行的判定

    1、直线与平面平行的判定定

    2.【六年级下册数学第二单元知识点总结(圆柱和圆锥)】

    一、圆柱圆柱的定义1、以矩形的一边绕着另一条边旋转360°,所得到的空间几何体叫做圆柱,即AG矩形的一条边为轴,旋转360°所得的几何体就是圆柱.其中AG叫做圆柱的轴,AG的长度叫做圆柱的高,所有平行于AG的线段叫做圆柱的母线,DA和D'G旋转形成的两个圆叫做圆柱的底面,DD'旋转形成的曲面叫做圆柱的侧面.2、在同一个平面内有一条定直线和一条动线,当这个平面绕着这条定直线旋转一周时,这条动线所成的面叫做旋转面,这条定直线叫做旋转面的轴,这条动线叫做旋转面的母线.如果母线是和轴平行的一条直线,那么所生成的旋转面叫做圆柱面.如果用垂直于轴的两个平面去截圆柱面,那么两个截面和圆柱面所围成的几何体叫做直圆柱,简称圆柱.圆柱的表面积圆柱体表面的面积,叫做这个圆柱的表面积.圆柱的表面积=2*底面积+侧面积圆柱的侧面展开以后是一个正方形(长方形),侧面展开以后的长是底面周长,宽是高,所以侧面积=底面周长*高设一个圆柱底面半径为r,高为h,则表面积S:S=2*S底+S侧=2*πr2+CH 圆柱的体积圆柱所占空间的大小,叫做这个圆柱体的体积.圆柱的体积跟长方体、正方体一样,都是底面积*高:设一个圆柱底面半径为r,高为h,则体积V:V=πr2h如S为底面积,高为h,体积为V:v=sh圆柱的侧面积圆柱的侧面积=底面周长乘高 S侧=Ch注:c为πd 圆柱各部分的名称圆柱的的两个圆面叫做底面(又分上底和下底);周围的面叫做侧面;两个底面之间的距离叫做高(高有无数条).二、圆锥圆锥的体积一个圆锥所占空间的大小,叫做这个圆锥的体积.一个圆锥的体积等于与它等底等高的圆柱的体积的1/3根据圆柱体积公式V=Sh(V=rrπh),得出圆锥体积公式:V=1/3Sh(V=1/3SH)S是底面积,h是高,r是底面半径.证明:把圆锥沿高分成k分 每份高 h/k,第 n份半径:n*r/k 第 n份底面积:pi*n^2*r^2/k^2 第 n份体积:pi*h*n^2*r^2/k^3 总体积(1+2+3+4+5+。

    +n)份:pi*h*(1^2+2^2+3^2+4^2+。+k^2)*r^2/k^3 因为 1^2+2^2+3^2+4^2+。

    +k^2=k*(k+1)*(2k+1)/6 所以 总体积(1+2+3+4+5+。+n)份:pi*h*(1^2+2^2+3^2+4^2+。

    +k^2)*r^2/k^3 =pi*h*r^2* k*(k+1)*(2k+1)/6k^3 =pi*h*r^2*(1+1/k)*(2+1/k)/6 因为当n越来越大,总体积越接近于圆锥体积,1/k越接近于0 所以pi*h*r^2*(1+1/k)*(2+1/k)/6=pi*h*r^2/3 因为V柱=pi*h*r^2 所以 V锥是与它等底等高的V柱体积的1/3 圆锥的表面积一个圆锥表面的面积叫做这个圆锥的表面积. 圆锥的计算公式圆锥的侧面积=高的平方*π*百分之扇形的度数圆锥的侧面积=1/2*母线长*底面周长圆锥的表面积=底面积+侧面积 S=πr的平方+πra (注a=母线)圆锥的体积=1/3SH 或 1/3πr的平方h如果圆锥和他的扇形联系在一起那么n=a/r*360 圆锥的其它概念圆锥的高:圆锥的顶点到圆锥的底面圆心之间的距离叫做圆锥的高;圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形;没展开时是一个曲面.圆锥的母线:圆锥的侧面展开形成的扇形的半径、底面圆上到顶点的距离.圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且侧面展开图是扇形.圆柱与圆锥的关系与圆柱等底等高的圆锥体积是圆柱体积的三分之一.体积和高相等的圆锥与圆柱之间,圆锥的底面积是圆柱的三倍.体积和底面积相等的圆锥与圆柱之间,圆锥的高是圆柱的三倍.不相等的圆柱圆锥不相等.。

    3.【人教版七年级数学上知识点归纳第八章(本书第一章)相交线与平行

    七年级数学(下)期末复习知识点整理 5.1相交线 1、邻补角与对顶角 两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表: 7图形 7顶点 7边的关系 7大小关系 7 7对顶角 7 ∠1与∠2 7有公共顶点 7∠1的两边与∠2的两边互为反向延长线 7对顶角相等 即∠1=∠2 7 7邻补角 7 ∠3与∠4 7有公共顶点 7∠3与∠4有一条边公共,另一边互为反向延长线. 7∠3+∠4=180° 7 7注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角; ⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角 ⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角. ⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个. 2、垂线 ⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足. 符号语言记作: 如图所示:AB⊥CD,垂足为O ⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记) ⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短.简称:垂线段最短. 3、垂线的画法: ⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线. 注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上. 画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线. 4、点到直线的距离 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离 记得时候应该结合图形进行记忆. 如图,PO⊥AB,同P到直线AB的距离是PO的长.PO是垂线段.PO是点P到直线AB所有线段中最短的一条. 现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用. 5、如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念 分析它们的联系与区别 ⑴垂线与垂线段 区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量长度. 联系:具有垂直于已知直线的共同特征.(垂直的性质) ⑵两点间距离与点到直线的距离 区别:两点间的距离是点与点之间,点到直线的距离是点与直线之间. 联系:都是线段的长度;点到直线的距离是特殊的两点(即已知点与垂足)间距离. ⑶线段与距离 距离是线段的长度,是一个量;线段是一种图形,它们之间不能等同. 5.2平行线 1、平行线的概念: 在同一平面内,不相交的两条直线叫做平行线,直线与直线互相平行,记作‖. 2、两条直线的位置关系 在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行. 因此当我们得知在同一平面内两直线不相交时,就可以肯定它们平行;反过来也一样(这里,我们把重合的两直线看成一条直线) 判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定: ①有且只有一个公共点,两直线相交; ②无公共点,则两直线平行; ③两个或两个以上公共点,则两直线重合(因为两点确定一条直线) 3、平行公理――平行线的存在性与惟一性 经过直线外一点,有且只有一条直线与这条直线平行 4、平行公理的推论: 如果两条直线都与第三条直线平行,那么这两条直线也互相平行 如左图所示,∵‖,‖ ∴‖ 注意符号语言书写,前提条件是两直线都平行于第三条直线,才会结论,这两条直线都平行. 5、三线八角 两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角. 如图,直线被直线所截 ①∠1与∠5在截线的同侧,同在被截直线的上方, 叫做同位角(位置相同) ②∠5与∠3在截线的两旁(交错),在被截直线之间(内),叫做内错角(位置在内且交错) ③∠5与∠4在截线的同侧,在被截直线之间(内),叫做同旁内角. ④三线八角也可以成模型中看出.同位角是“A”型;内错角是“Z”型;同旁内角是“U”型. 6、如何判别三线八角 判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全. 例如: 如图,判断下列各对角的位置关系:⑴∠1与∠2;⑵∠1与∠7;⑶∠1与∠BAD;⑷∠2与∠6;⑸∠5与∠8. 我们将各对角从图形中抽出来(或者说略去与有关角无关的线),得到下列各图. 如图所示,不难看出∠1与∠2是同旁内角;∠1与∠7是同位角;∠1与∠BAD是同旁内角;∠2与∠6是内错角;∠5与∠8对顶角. 注意:图中∠2与∠9,它们是同位角吗? 不是,因为∠2与∠9的各边分别在四条不同直线上,不是两直线被第三条直线所截而成. 7、两直线平行的判定方法 方法一 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行 简称:同位角相等,两直线平行 方法二 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行 简称:内错角相等,两直线平行 方法三 两条直。

    4.高中数学必修3的知识点总结

    第十二部分 统计与统计案例1.抽样方法 ⑴简单随机抽样:一般地,设一个总体的个数为N,通过逐个不放回的方法从中抽取一个容量为n的样本,且每个个体被抽到的机会相等,就称这种抽样为简单随机抽样。

    注:①每个个体被抽到的概率为 ;②常用的简单随机抽样方法有:抽签法;随机数法。⑵系统抽样:当总体个数较多时,可将总体均衡的分成几个部分,然后按照预先制定的 规则,从每一个部分抽取一个个体,得到所需样本,这种抽样方法叫系统抽样。

    注:步骤:①编号;②分段;③在第一段采用简单随机抽样方法确定其时个体编号 ;④按预先制定的规则抽取样本。⑶分层抽样:当已知总体有差异比较明显的几部分组成时,为使样本更充分的反映总体的情况,将总体分成几部分,然后按照各部分占总体的比例进行抽样,这种抽样叫分层抽样。

    注:每个部分所抽取的样本个体数=该部分个体数 2.总体特征数的估计:⑴样本平均数 ;⑵样本方差 ;⑶样本标准差 = ;3.相关系数(判定两个变量线性相关性): 注:⑴ >0时,变量 正相关; <0时,变量 负相关;⑵① 越接近于1,两个变量的线性相关性越强;② 接近于0时,两个变量之间几乎不存在线性相关关系。4.回归分析中回归效果的判定:⑴总偏差平方和: ⑵残差: ;⑶残差平方和: ;⑷回归平方和: - ;⑸相关指数 。

    注:① 得知越大,说明残差平方和越小,则模型拟合效果越好;② 越接近于1,,则回归效果越好。5.独立性检验(分类变量关系):随机变量 越大,说明两个分类变量,关系越强,反之,越弱。

    十、导 数1.导数的意义:曲线在该点处的切线的斜率(几何意义)、瞬时速度、边际成本(成本为因变量、产量为自变量的函数的导数). , (C为常数), , .2.多项式函数的导数与函数的单调性:在一个区间上 (个别点取等号) 在此区间上为增函数.在一个区间上 (个别点取等号) 在此区间上为减函数.3.导数与极值、导数与最值:(1)函数 在 处有 且“左正右负” 在 处取极大值;函数 在 处有 且“左负右正” 在 处取极小值.注意:①在 处有 是函数 在 处取极值的必要非充分条件.②求函数极值的方法:先找定义域,再求导,找出定义域的分界点,列表求出极值.特别是给出函数极大(小)值的条件,一定要既考虑 ,又要考虑验“左正右负”(“左负右正”)的转化,否则条件没有用完,这一点一定要切记.③单调性与最值(极值)的研究要注意列表!(2)函数 在一闭区间上的最大值是此函数在此区间上的极大值与其端点值中e799bee5baa6e59b9ee7ad9431333332636336的“最大值”;函数 在一闭区间上的最小值是此函数在此区间上的极小值与其端点值中的“最小值”;注意:利用导数求最值的步骤:先找定义域 再求出导数为0及导数不存在的的点,然后比较定义域的端点值和导数为0的点对应函数值的大小,其中最大的就是最大值,最小就为最小值.4.应用导数求曲线的切线方程,要以“切点坐标”为桥梁,注意题目中是“处L”还是“过L”,对“二次抛物线”过抛物线上一点的切线 抛物线上该点处的切线,但对“三次曲线”过其上一点的切线包含两条,其中一条是该点处的切线,另一条是与曲线相交于该点.5.注意应用函数的导数,考察函数单调性、最值(极值),研究函数的性态,数形结合解决方程不等式等相关问题.十一、概率、统计、算法第十六部分 理科选修部分1. 排列、组合和二项式定理 ⑴排列数公式: =n(n-1)(n-2)…(n-m+1)= (m≤n,m、n∈N*),当m=n时为全排列 =n(n-1)(n-2)…3.2.1=n!; ⑵组合数公式: (m≤n), ;⑶组合数性质: ;⑷二项式定理: ①通项: ②注意二项式系数与系数的区别;⑸二项式系数的性质:①与首末两端等距离的二项式系数相等;②若n为偶数,中间一项(第 +1项)二项式系数最大;若n为奇数,中间两项(第 和 +1项)二项式系数最大;③ (6)求二项展开式各项系数和或奇(偶)数项系数和时,注意运用赋值法。2. 概率与统计 ⑴随机变量的分布列:①随机变量分布列的性质:pi≥0,i=1,2,…; p1+p2+…=1; ②离散型随机变量:X x1 X2 … xn … P P1 P2 … Pn … 期望:EX= x1p1 + x2p2 + … + xnpn + … ; 方差:DX= ; 注: ;③两点分布: X 0 1 期望:EX=p;方差:DX=p(1-p).P 1-p p 4 超几何分布:一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则 其中, 。

    称分布列 X 0 1 … m P … 为超几何分布列, 称X服从超几何分布。⑤二项分布(独立重复试验):若X~B(n,p),则EX=np, DX=np(1- p);注: 。

    ⑵条件概率:称 为在事件A发生的条件下,事件B发生的概率。注:①0 P(B|A) 1;②P(B∪C|A)=P(B|A)+P(C|A)。

    ⑶独立事件同时发生的概率:P(AB)=P(A)P(B)。⑷正态总体的概率密度函数: 式中 是参数,分别表示总体的平均数(期望值)与标准差;(6)正态曲线的性质:①曲线位于x轴上方,与x轴不相交;②曲线是单峰的,关于直线x= 对称;③曲线在x= 处达到峰值 ;④曲线与x轴之间的面积为1;5 当 一定时,6 曲线随 质的变化沿x轴平移;7 当 一定时,8 曲线形状由 确定: 越大,9 曲线越“矮胖”,10 表示总体分布越集中;越小,曲线越“高瘦”,表。

    5.初中数学重要知识点

    我只能给你总结一些知识点,见谅见谅 初中的数学主要是分代数和几何两大部分,两者在中考中所占的比例,代数略大于几何(我不知道你是哪里的人,反正在我们江苏省泰州市的中考中是这样的)。

    代数主要有以下几点:1,有理数的运算,主要讲有理数的三级运算(加减乘除和乘方开方)在这里要注意数字和字母的符号意识,就是,不要受小学数字的影响,一看见字母就不会做题了。 2,整式的三级运算,注意符号意识的培养,还有就是因式分解,这和整式的乘法是互换的,注意像平方差公式和完全平方公式的正用、逆用和变形用。

    3,方程,会一元一次、二元一次、三元一次、一元二次四种方程的解法和应用,记住,方程是一种方法,是一种解题的手段。 4,函数,会识别一次函数、二次函数、反比例函数的图像,记住他们的特征,要会根据条件来应用。

    尤其要注意二次函数,这是中考的重点和难点。应用题里会拿它来出一道难题的 几何主要有以下几点:1,识别各种平面图形和立体图形,这你应该非常熟悉。

    2,图形的平移、旋转和轴对称,这个考察你的空间想象的能力,多做一些题。 3,三角形的全等和相似,要会证明,注意要有完整的过程和严密的步骤,背过证明三角形全等的五种方法和证明相似的四种方法;还有像等腰三角形、直角三角形和黄金三角形的性质,要会应用,这在证明题中会有很大的帮助。

    4,四边形,把握好平行四边形、长方形、正方形、菱形和梯形的概念,选择体里会拿着它们之间的微小差异而大做文章,注意它们的判定和性质,证明题里也会考到。 5,圆,我这里没有细学,因为这里不是我们中考的重点,但是圆的难度会很大,它的知识点很多、很碎,圆的难题就是由许许多多细小的点构成的。

    以上就是我对初中数学知识的总结,不过,这毕竟是我的东西,我是个高中生,初中的课本我也有一段时间没碰过了,有遗漏之处,就要靠你的努力了(不好意思,题目我也没有) 易错题型你可以看看"天骄之路"丛书或上网搜索,最好是向老师要一点资料。

    6.小学数学知识点总结(全部)

    对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?

    一、重视课内听讲,课后及时进行复习.

    新知识的接受和数学能力的培养主要是在课堂上进行的,所以我们必须特别注意课堂学习的效率,寻找正确的学习方法.在课堂上,我们必须遵循教师的思想,积极制定以下步骤,思考和预测解决问题的思想与教师之间的差异.特别是,我们必须了解基本知识和基本学习技能,并及时审查它们以避免疑虑.首先,在进行各种练习之前,我们必须记住教师的知识点,正确理解各种公式的推理过程,并试着记住而不是采用"不确定的书籍阅读".勤于思考,对于一些问题试着用大脑去思考,认真分析问题,尝试自己解决问题.

    二、多做习题,养成解决问题的好习惯.

    如果你想学好数学,你需要提出更多问题,熟悉各种问题的解决问题的想法.首先,我们先从课本的题目为标准,反复练习基本知识,然后找一些课外活动,帮助开拓思路练习,提高自己的分析和掌握解决的规律.对于一些易于查找的问题,您可以准备一个用于收集的错题本,编写自己的想法来解决问题,在日常养成解决问题的好习惯.学会让自己高度集中精力,使大脑兴奋,快速思考,进入最佳状态并在考试中自由使用.

    三、调整心态并正确对待考试.

    首先,主要的重点应放在基础、基本技能、基本方法,因为大多数测试出于基本问题,较难的题目也是出自于基本.所以只有调整学习的心态,尽量让自己用一个清楚的头脑去解决问题,就没有太难的题目.考试前要多对习题进行演练,开阔思路,在保证真确的前提下提高做题的速度.对于简单的基础题目要拿出二十分的把握去做;难得题目要尽量去做对,使自己的水平能正常或者超常发挥.

    由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.

    7.小学三年级数学知识点总结

    最低0.27元/天开通百度文库会员,可在文库查看完整内容>

    原发布者:可柯斯达

    西师版小学数学三年级上册期末复习知识点第一单元:克、千克、吨的认识【知识要点】:1、计量物品轻重的单位有克、千克、吨。2、计量较轻的物品有多重,通常用克作单位,克用字母g表示。3、计量较重的物品有多重,通常用千克作单位,也叫公斤,千克用字母kg表示。1kg=1000g4、计量很重的物品有多重,通常用吨作单位。吨用字母t表示。1t=1000kg5、相邻质量单位间的进率是1000。40个25千克的学生重1吨。5、1T=1000kg1kg=1000g.6、换算:单位相互换算的方法(1)把吨化成千克,千克化成克,是用吨数或千克数乘进率1000。(2)把千克化成吨,克化成千克,是用千克数或克数除以进率1000。口诀:小换大减三个0,大换小加三个0如:把克换成千克、千克换成吨去掉3个0,把吨换成千克、千克换成克加上3个0.7、重量的大小比较记忆:先统一单位,再比较大小。【应用】1、1枚2分硬币重1克;一袋食盐重500克,2袋食盐重1kg。1个鸡蛋的重量大约是50g,1个苹果的重量大约是250g。2、5本数学书的重量大约是1kg。1个小学生的体重大约是25kg,4个小学生的体重大约是100kg,40个小学生的体重大约是1吨。一头大象约重6吨。3、计算:1吨+3000千克=()吨,方法是当相加或相减的数单位不一样时,要先换成统一的单位后在计算。注意:1㎏棉花和1㎏铁一样重。第二单元:两、三位数乘一位数的乘法【知识要点】:(一)两、三位数乘一位数的乘法1.口算:①整十、整百数乘一位数的口算,计算时先计算0前

    8.小学数学三至六年级知识点

    最低0.27元开通文库会员,查看完整内容>

    原发布者:无所谓_671

    人教版小学数学三年级下册【知识点】总复习第一单元位置与方向1、东与西相对,南与北相对。按顺时针方向转:东→南→西→北。2、地图通常是按上北下南,左西右东绘制的。3、八个方向:东、南、西、北、东南、东北、西南、西北。第二单元除数是一位数的除法1、笔算除法顺序:确定商的位数,试商,检查,验算。2、基本规律:(除数是一位,先看前一位,一位不够看两位,除到哪位商哪位。除后要比较,余数要比除数小)(1)从高位除起,除到哪一位,就把商写在那一位;(2)三位数除以一位数时百位上够除,商就是三位数;百位上不够除,商就是两位数;(最高位不够除,就看两位上商。)(3)哪一位有余数,就和后面一位上的数合起来再除;(4)哪一位上不够商1,就添0占位;每一次除得的余数一定要比除数小。3、除法用乘法来验算没有余数的除法:有余数的除法:被除数÷除数=商被除数÷除数=商……余数商*除数=被除数商*除数+余数=被除数4、0除以任何e69da5e887aa7a6431333433623764数(0除外)都等于0,0乘以任何数都得0,0加任何数都得任何数本身,任何数减0都得任何数本身。5、加一份和减一份的余数问题例1:38个去划船,每条船限坐4个,一共要几条船?38÷4=9(条)……2(人)余下的2人也要1条船,9+1=10条。答:一共要10条船。例2:做一件成人衣服要3米布,现在有17米布,能做几件成人衣服?17÷3=5(件)……2(米)余下的2米布不能做一件成人衣服答:能做5

    数学2—3知识点总结

    发表评论

    登录后才能评论