稿件处理的智能决策支持系统研究
1.什么是智能决策支持系统
决策支持系统是辅助决策者对“半结构化问题和非结构化问题”进行决策的人机交互系统,并不是代替管理者进行决策的系统,这就意味着决策分析不能完全用一种事先定义好的算法、程序或模型来机械地处理,不能完全依靠计算机系统做全部工作,它需要人机的交互作用,只能辅助而不是代替高层管理人员进行决策活动。
智能决策支持——IDS (Intelligent Decision Support),是在以数学模型和定量分析方法为基础的决策支持(DS)上集成了以定性处理为特征的人工智能(AI)和专家系统而形成良好的IDS各组成部分有机地结合起来的体系结构。
2.智能决策支持系统的系统结构
较完整与典型的DSS结构是在传统三库DSS的基础上增设知识库与推理机,在人机对话子系统加入自然语言处理系统 (LS),与四库之间插人问题处理系统(PSS)而构成的四库系统结构。
智能人机接口
四库系统的智能人机接口接受用自然语言或接近自然语言的方式表达的决策问题及决策目标,这较大程度地改变了人机界面的性能。
问题处理系统
问题处理系统处于DSS的中心位置,是联系人与机器及所存储的求解资源的桥梁,主要由问题分析器与问题求解器两部分组成。
1)自然语言处理系统:转换产生的问题描述由问题分析器判断问题的结构化程度,对结构化问题选择或构造模型,采用传统的模型计算求解;对半结构化或非结构化问题则由规则模型与推理机制来求解。
2)问题处理系统:是IDSS中最活跃的部件,它既要识别与分析问题,设计求解方案,还要为问题求解调用四库中的数据、模型、方法及知识等资源,对半结构化或非结构化问题还要触发推理机作推理或新知识的推求。
知识库子系统和推理机
知识库子系统的组成可分为三部分:知识库管理系统、知识库及推理机。
1)知识库管理系统。功能主要有两个:一是回答对知识库知识增、删、改等知识维护的请求;二是回答决策过程中间题分析与判断所需知识的请求。
2)知识库。知识库是知识库子系统的核心。
知识库中存储的:是那些既不能用数据表示,也不能用模型方法描述的专家知识和经验,也即是决策专家的决策知识和经验知识,同时也包括一些特定问题领域的专门知识。
知识库中的知识表示:是为描述世界所作的一组约定,是知识的符号化过程。对于同一知识,可有不同的知识表示形式,知识的表示形式直接影响推理方式,并在很大程度上决定着一个系统的能力和通用性,是知识库系统研究的一个重要课题。
知识库包含事实库和规则库两部分。例如:事实库中存放了“任务A是紧急订货”、“任务B是出口任务”那样的事实。规则库中存放着“IF任务i是紧急订货,and任务i是出口任务,THEN任务i按最优先安排计划”、“IF任务i是紧急订货,THEN任务i按优先安排计划”那样的规则。
3)推理机
推理:是指从已知事实推出新事实 (结论)的过程。
推理机:是一组程序,它针对用户问题去处理知识库 (规则和事实)。
推理原理如下:
若事实M为真,且有一规则“IF M THEN N”存在,则N为真。
因此,如果事实“任务A是紧急订货”为真,且有一规则“IF任务i是紧急订货THEN任务i按优先安排计划”存在,则任务A就应优先安排计划。
3.智能决策支持系统和决策支持系统有什么不同
决策支持系统强调的是对管理决策的支持,而不是决策的自动化,它所支持的决策可以是任何管理层次上的,如战略级、战术级或执行级的决策。
把商业智能看成一种解决方案应该比较恰当。商业智能的关键是从许多来自不同的企业运作系统的数据中提取出有用的数据并进行清理,以保证数据的正确性,然后经过抽取(Extraction)、转换(Transformation)和装载(Load),即ETL过程,合并到一个企业级的数据仓库里,从而得到企业数据的一个全局视图,在此基础上利用合适的查询和分析工具、数据挖掘工具、OLAP工具等对其进行分析和处理(这时信息变为辅助决策的知识),最后将知识呈现给管理者,为管理者的决策过程提供数据支持。
4.决策支持系统的决策分类
群决策支持系统(GDSS)
群决策支持系统可提供三个级别的决策支持:
第一层次是GDSS旨在减少群体决策中决策者之间的通信,沟通信息,消除交流的障碍,如及时显示各种意见的大屏幕,投票表决和汇总设备,无记名的意见和偏爱的输入,成员间的电子信息交流等。其目的是通过改进成员间的信息交流来改进决策过程,通常所说的“电子会议系统”就属于这一类。
第二层次的GDSS提供善于认识过程和系统动态的结构技术,决策分析建模和分析判断方法的选择技术。这类系统中的决策者往往面对面地工作,共享信息资源,共同制定行动计划。
第三层次的GDSS其主要特征是将上述两个层次的技术结合起来,用计算机来启发、指导群体的通信方式,包括专家咨询和会议中规则的智能安排。
分布式决策支持系统(DDSS)
DDSS是由多个物理分离的信息处理特点构成的计算机网络,网络的每个结点至少含有一个决策支持系统或具有若干辅助决策的功能。与一般的决策支持系统相比,DDSS有以下一些特征:
DDSS是一类专门设计的系统,能支持处于不同结点的多层次的决策,提供个人支持、群体支持和组织支持。不仅能从一个结点向其它结点提供决策,还能提供对结果的说明和解释,有良好的资源共享。能为结点间提供交流机制和手段,支持人机交互,机机交互和人与人交互。具有处理结点间可能发生的冲突的能力,能协调各结点的操作,既有严格的内部协议,又是开放性的,允许系统或结点方便地扩展,同时系统内的结点作为平等成员而不形成递阶结构,每个结点享有自治权。
智能决策支持系统(IDSS)
智能决策支持系统是决策支持系统(DSS)与人工智能(AI)相结合的产物,其设计思想着重研究把AI的知识推理技术和DSS的基本功能模块有机地结合起来。有的DSS已融进了启发式搜索技术,这就是人工智能方法在DSS中的初步实现。将人工智能技术引入决策支持系统主要有两方面原因:第一是人工智能因可以处理定性的、近似的或不精确的知识而引入DSS中;第二DSS的一个共同特征是交互性强,这就要求使用更方便,并在接口水平和在进行的推理上更为“透明”。人工智能在接口水平,尤其是对话功能上对此可以作出有益的贡献,如自然语言的研究使用使DSS能用更接近于用户的语言来实现接口功能。
智能-交互-集成化决策支持系统(3IDSS)
随着DSS应用范围的不断扩大,应用层次的逐渐提高,DSS已进入到区域性经济社会发展战略研究、大型企业生产经营决策等领域的决策活动中来,这些决策活动不仅涉及到经济活动各个方面、经营管理的各个层次,而且各种因素互相关联,决策环境更加错综复杂。对于省、市、县等发展战略规划方面的应用领域,决策活动还受政治、社会、文化、心理等因素不同程度的影响,而且可供使用的信息又不够完善、精确,这些都给DSS系统的建设造成了很大的困难。在这种情况下,一种新型的、面向决策者、面向决策过程的综合性决策支持系统产生了,即智能-交互-集成化决策支持系统(Intelligent,Interactive and Integrated DSS,简称3IDSS)。
集成化:在这种情况下,采用单一的以信息为基础的系统,或以数学模型为基础的系统,或以知识、规则为基础的系统,都难以满足上述这些领域的决策活动的要求。这就需要在面向问题的前提下,将系统分析、运筹学方法、计算机技术、知识工程、人工智能等有机地结合起来,发挥各自的优势,实现决策支持过程的集成化。
交互性:决策支持系统的核心内容是人机交互。为了帮助决策者处理半结构化和非结构化的问题,认定目标和环境约束,进一步明确问题,产生决策方案和对决策方案进行综合评价,系统应具备更强的人机交互能力,成为交互式系统(Interactive systems)。
智能化:决策支持系统在处理难以定量分析的问题时,需要使用知识工程、人工智能方法和工具,这就是决策支持系统的智能化(Intelligent)。
5.说明新决策支持系统和传统决策支持系统的区别
20世纪90年代初,开始了将DSS和ES结合起来的智能决策支持系统IDSS,即IDSS=DSS+ES,这种决策支持系统采用了定性和定量结合的方法辅助决策,以模型、知识和数据结合的方式构建决策支持系统。这种决策支持系统区别于后来发展起来的以数据仓库为基础的决策支持系统,被称为传统决策支持系统。
新决策支持系统发展迅速,一度有替代传统决策支持系统的趋势。但是新决策支持系统与传统决策支持系统不是覆盖关系,而是互补关系。这样,就出现了综合决策支持系统(S-DSS),它是新旧两种决策支持系统的结合,即S-DSS=IDSS+NDSS。
由于Internet的迅速发展,S-DSS中的数据库、模型库、知识库、数据仓库、联机分析处理、数据挖掘等均以服务器的形式向多用户同时提供服务,出现了集数据库服务器(DBS)、模型服务器(MS)、知识服务器(KS)、数据仓库服务器(DWS)、联机分析与数据挖掘服务器(ODS)于一体的网络环境的综合决策支持系统(NS-DSS).
6.管理信息系统:如何理解决策支持系统
决策支持系统(Decision Support System ,简称DSS)是辅助决策者通过数据、模型和知识,以人机交互方式进行半结构化或非结构化决策的计算机应用系统。
它是管理信息系统(MIS)向更高一级发展而产生的先进信息管理系统。 它为决策者提供分析问题、建立模型、模拟决策过程和方案的环境,调用各种信息资源和分析工具,帮助决策者提高决策水平和质量。
决策按其性质可分为如下3类: (1)结构化决策,是指对某一决策过程的环境及规则,能用确定的模型或语言描述,以适当的算法产生决策方案,并能从多种方案中选择最优解的决策; (2)非结构化决策,是指决策过程复杂,不可能用确定的模型和语言来描述其决策过程,更无所谓最优解的决策; (3)半结构化决策,是介于以上二者之间的决策,这类决策可以建立适当的算法产生决策方案,使决策方案中得到较优的解。 非结构化和半结构化决策一般用于一个组织的中、高管理层,其决策者一方面需要根据经验进行分析判断,另一方面也需要借助计算机为决策提供各种辅助信息,及时做出正确有效的决策。
决策的进程一般分为4个步骤: (1)发现问题并形成决策目标,包括建立决策模型、拟定方案和确定效果度量,这是决策活动的起点; (2)用概率定量地描述每个方案所产生的各种结局的可能性; (3)决策人员对各种结局进行定量评价,一般用效用值来定量表示。 效用值是有关决策人员根据个人才能、经验、风格以及所处环境条件等因素,对各种结局的价值所作的定量估计; (4)综合分析各方面信息,以最后决定方案的取舍,有时还要对方案作灵敏度分析,研究原始数据发生变化时对最优解的影响,决定对方案有较大影响的参量范围。
决策往往不可能一次完成,而是一个迭代过程。决策可以借助于计算机决策支持系统来完成,即用计算机来辅助确定目标、拟定方案、分析评价以及模拟验证等工作。
在此过程中,可用人机交互方式,由决策人员提供各种不同方案的参量并选择方案。 决策支持系统基本结构主要由四个部分组成,即数据部分、模型部分、推理部分和人机交互部分: 数据部分是一个数据库系统; 模型部分包括模型库(MB)及其管理系统(MBMS); 推理部分由知识库(KB)、知识库管理系统(KBMS)和推理机组成; 人机交互部分是决策支持系统的人机交互界面,用以接收和检验用户请求,调用系统内部功能软件为决策服务,使模型运行、数据调用和知识推理达到有机地统一,有效地解决决策问题。
