初三数学教案模板范文
初中数学讲课稿
各位评委:
大家好!今天我说课的题目是有理数的加法,所选用的教材为人教版7年级上册第一章第3课时,对于本节课我想做以下汇报:
一•教材分析
1.地位和作用
本节课要求学生经历有理数加法法则和运算律的探索过程,理解和掌握有理数加法运算法则,并能运用加法运算律简化计算.
2.学情分析
初一年级学生学习基础较薄弱,学习能力还不够强.通过小学四则运算的学习,头脑中已形成相关计算规律,知道数都是指正整数、正分数和零等具体的数,因此学生可能会用小学的思维定势去认知、理解有理数的加法.但是学生已经知道数已经扩大到有理数,,出现了负数,并且学习了数轴和绝对值,这些基础是学习新课的必备条件。为了学生能切实掌握所学知识,在教学中特别设计了反馈练习;对于教材中的例题和练习题,将作适当的延伸拓展和变式处理.
3.教学目标
认知目标
(1)掌握有理数加法的法则,理解有理数加法的意义.(2)并能进行有理数加法的运算。 能力目标
①学生亲身经历探究有理数加法法则的过程,深刻理解数形结合的思想,由特殊到一般、由具体到抽象的认知规律。
②学生通过动手、发现、分类、比较类方法的学习,提高了对事物之间是普遍联系又是变化发展的辩证观点的再认识.
情感目标
通过联系实际自主探究、自主观察、分类归纳有理数加法法则,能够体会到数学的应用价值;在合作学习中增强与他人的合作。
4.教学重点与难点
重点:有理数加法法则中符号的确定。
难点:异号两数相加的符号。
二、教学方法与教材处理
1.教学方法
师生互动探究式教学 以教学大纲为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初一学生的求知心理和已有的认知水平开展教学.学生通过熟悉的现实生活情景,发现有些计算方式是不够的,引发认知冲突,提出需要学习新的知识.引导学生类比探究有理数加法法则,形成师生互动,体现了数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上.
2.学法引导
学法突出自主探索、研讨发现.知识是通过学生自己动口、动脑,积极思考、主动探索获得.学生在讨论、交流、合作、探究活动中总结有理数加法法则。在活动中注重引导学生体会用类比和数形结合的方法扩展知识的过程,培养学生学习的主动性和积极性.
3.设计理念
《大纲》要求,对于课程实施和教学过程,教师在教学过程中应与学生积极互动、共同发展,要处理好传授知识与培养能力的关系,关注个体差异,满足不同学生的学习需要. 本节课的教学,是在学生已有的加法知识基础上,创设情景,产生认知冲突,引导学生开展观察特点、类比归纳、讨论交流等探究活动,在活动中向学生渗透类比数形结合的思想、特殊与一般的辩证唯物主义观点.
三、教学过程
根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点.本节课的教学设计环节:
前提诊测,复习提问: 复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判断”,所诊测的绝对值意义和数轴与新的内容有关。
提出问题,创设情景: 从实际问题引入,提出表示数量关系仅用正数表示是不够的,体现了数学源于生活.从而提出研究有理数加法的问题。
尝试指导,实施目标: 从实例出发,利用输赢球得分原理和在数轴上运动方向符号的特点,通过小组探究得出加法法则。
变式训练,巩固目标: 为了更好地理解、掌握有理数加法法则,根据不同学生的学习需要,按照分层递进的教学原则,设计安排了4个由浅入深的例题.(1)是整数的异号两数相加;(2)是整数的同号两数相加;(3)(4)是小数和分数的异号两数相加。同时配有两个由低到高、层次不同的巩固性练习,体现渐进性原则,希望学生能将知识转化为技能
形成性测试,检测目标:把“反馈---调节”贯穿于整个课堂,教学结束,应针对教学目标的层次水平,进行测试,对尚未达标的学生进行补救,以消除错误的积累,从而有效的控制学生学习上的两极分化。
归纳总结,纳入知识系统: 由学生总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题.
初中数学教学案例
2.3 平行线的性质一、教材分析:本节课是人民教育出版社义务教育课程标准实验教科书(五四学制)七年级上册第2章 第3节 平行线的性质,它是平行线及直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分。
二、教学目标:知识与技能:掌握平行线的性质,能应用性质解决相关问题。数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。
解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神。
三、教学重、难点:重点:平行线的性质难点:“性质1”的探究过程四、教学方法:“引导发现法”与“动像探索法”五、教具、学具:教具:多媒体课件学具:三角板、量角器。六、教学媒体:大屏幕、实物投影七、教学过程:(一)创设情境,设疑激思:1.播放一组幻灯片。
内容:①火车行驶在铁轨上;②游泳池;③横格纸。2.声音:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?学生活动:思考回答。
①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;教师:首先肯定学生的回答,然后提出问题。问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?引出课题——平行线的性质。
(二)数形结合,探究性质1.画图探究,归纳猜想任意画出两条平行线(a‖b),画一条截线c与这两条平行线相交,标出8个角(如图)。问题一:指出图中的同位角,并度量这些角,把结果填入下表:第一组 第二组 第三组 第四组同位角 ∠1 ∠5角的度数数量关系学生活动:画图——度量——填表——猜想结论: 两直线平行,同位角相等。
问题二:再画出一条截线d,看你的猜想结论是否仍然成立?学生:探究、讨论,最后得出结论:仍然成立。2.教师用《几何画板》课件验证猜想3.性质1. 两条直线被第三条直线所截,同位角相等。
(两直线平行,同位角相等)(三)引申思考,培养创新问题三:请判断内错角、同旁内角各有什么关系?学生活动:独立探究——小组讨论——成果展示。教师活动:评价,引导学生说理。
因为a‖b 因为a‖b所以∠1=∠2 所以∠1=∠2又 ∠1=∠3 又 ∠1+∠4=180°所以∠2=∠3 所以∠2+∠4=180°语言叙述: 性质2 两条直线被第三条直线所截,内错角相等。(两直线平行,内错角相等) 性质3 两条直线被第三条直线所截,同旁内角互补。
(两直线平行,同旁内角互补)(四)实际应用,优势互补1.(抢答)(1)如图,平行线AB、CD被直线AE所截①若∠1 = 110°,则∠2 = °。理由: 。
②若∠1 = 110°,则∠3 = °。理由: 。
③若∠1 = 110°,则∠4 = °。理由: 。
(2)如图,由AB‖CD,可得( ) (A)∠1=∠2 (B)∠2=∠3 (C)∠1=∠4 (D)∠3=∠4(3)如图,AB‖CD‖EF, 那么∠BAC+∠ACE+∠CEF=( )(A) 180°(B)270° (C)360° (D)540°(4)谁问谁答:如图,直线a‖b,如:∠1=54°时,∠2= . 学生提问,并找出回答问题的同学。2.(讨论解答)如图是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,求梯形另外两角分别是多少度?(五)概括存储(小结)1.平行线的性质1、2、3;2.用“运动”的观点观察数学问题;3.用数形结合的方法来解决问题。
(六)作业 第69页 2、4、7.八、教学反思:①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。在引导学生画图、测量、发现结论后,利用几何画板直观地、动态地展示同位角的关系,激发学生自觉地探究数学问题,体验发现的乐趣。
②学的转变:学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境。
③课堂氛围的转变:整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。
初中数学说课稿模板?
关于<< >>的说课稿各位老师你们好! 今天我要为大家说课的课题是 首先,我对本节教材进行一些分析:一、教材分析(说教材):1、教材所处的地位和作用:本节内容在全书及章节的地位是:《 》是初中数学教材第 册第 章第 节内容。
在此之前,学生已学习了 基础上,这为过渡到本节的学习起着铺垫作用。本节内容是在 中,占据 的地位。
以及为其他学科和今后高中的学习打下基础。2、教育教学目标:根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:(1)、知识目标:(2)、能力目标:通过教学初步培养学生分析问题,解决实际问题,读图分析、收集处理信息、团结协作、语言表达的能力,以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力。
(3)、情感目标: 通过对 的教学,引导学生从现实生活的经历与体验出发,激发学生对数学问题的兴趣,形成主动学习的态度,同时渗透爱国主义思想。通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。
3:重点,难点以及确定的依据:本课中 是重点, 是本课的难点,其理论依据是 这一难点,但由于学生年龄小,解决实际问题能力弱,对理论联系实际的问题的理解难度大。下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法和学法上谈谈:二:教学策略(说教法):一教学手段:如何突出重点,突破难点,从而实现教学目标。
我在教学过程中拟计划进行如下操作:1:“读(看)——议——讲”结合法2:图表分析法3:读图讨论法4:教学过程中坚持启发式教学的原则基于本节课的特点: ,应着重采用 的教学方法。即: 二教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,根据学生的心理发展规律,联系实际安排教学内容。
采用学生参与程度高的学导式讨论教学法。在学生看书、讨论基础上,在教师启发引导下,运用问题解决式教学法,师生交谈法、问答法、课堂讨论法,引导学生根据现实生活的经历和体验及收集到的信息(感性材料)来理解课文中的理论知识。
在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展。
同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践,学以致用,落实教学目标。使学生学习对生活有用的数学,学习对终身发展有用的数学的基本理念。
提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中要积极培养学生学习兴趣和动机,明确的学习目的。教师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。
三:学情分析:(说学法)1 、学生特点分析:中学生心理学研究指出,初中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。从年龄特点来看,初中学生好动、好奇、好表现,抓住学生特点,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。
生理上,青少年好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住学生这一生理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。2、知识障碍上:⑴知识掌握上,学生原有的知识 ,许多学生出现知识遗忘,所以应全面系统的去讲述。
⑵学生学习本节课的知识障碍。 知识,学生不易理解,所以教学中教师应予以简单明白、深入浅出的分析。
3、动机和兴趣上:明确的学习目的。教师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。
最后我来具体谈一谈这一堂课的教学过程:四、 教学程序及设想: 教学程序:(一):课堂结构:复习提问,导入新课,探究活动、点拨提高、课堂练习、反思小结、布置作业等6个部分。(二):教学简要过程:1:温故知新:(3-5')2:小组活动(10')3、合作达标:(10)4:牛刀小试:5:反思小结:6:作业布置;五:板书设计及时间安排。
初中数学教学案例
2.3 平行线的性质 一、教材分析:本节课是人民教育出版社义务教育课程标准实验教科书(五四学制)七年级上册第2章 第3节 平行线的性质,它是平行线及直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分。
二、教学目标:知识与技能:掌握平行线的性质,能应用性质解决相关问题。数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。
解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神。
三、教学重、难点:重点:平行线的性质 难点:“性质1”的探究过程 四、教学方法:“引导发现法”与“动像探索法” 五、教具、学具:教具:多媒体课件 学具:三角板、量角器。六、教学媒体:大屏幕、实物投影 七、教学过程:(一)创设情境,设疑激思:1.播放一组幻灯片。
内容:①火车行驶在铁轨上;②游泳池;③横格纸。2.声音:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?学生活动:思考回答。
①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;教师:首先肯定学生的回答,然后提出问题。问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?引出课题——平行线的性质。
(二)数形结合,探究性质1.画图探究,归纳猜想 任意画出两条平行线(a‖b),画一条截线c与这两条平行线相交,标出8个角(如图)。问题一:指出图中的同位角,并度量这些角,把结果填入下表:第一组 第二组 第三组 第四组 同位角 ∠1 ∠5 角的度数 数量关系 学生活动:画图——度量——填表——猜想 结论: 两直线平行,同位角相等。
问题二:再画出一条截线d,看你的猜想结论是否仍然成立?学生:探究、讨论,最后得出结论:仍然成立。2.教师用《几何画板》课件验证猜想3.性质1. 两条直线被第三条直线所截,同位角相等。
(两直线平行,同位角相等) (三)引申思考,培养创新 问题三:请判断内错角、同旁内角各有什么关系?学生活动:独立探究——小组讨论——成果展示。教师活动:评价,引导学生说理。
因为a‖b 因为a‖b 所以∠1=∠2 所以∠1=∠2 又 ∠1=∠3 又 ∠1+∠4=180° 所以∠2=∠3 所以∠2+∠4=180° 语言叙述: 性质2 两条直线被第三条直线所截,内错角相等。(两直线平行,内错角相等) 性质3 两条直线被第三条直线所截,同旁内角互补。
(两直线平行,同旁内角互补) (四)实际应用,优势互补1.(抢答) (1)如图,平行线AB、CD被直线AE所截 ①若∠1 = 110°,则∠2 = °。理由: 。
②若∠1 = 110°,则∠3 = °。理由: 。
③若∠1 = 110°,则∠4 = °。理由: 。
(2)如图,由AB‖CD,可得( ) (A)∠1=∠2 (B)∠2=∠3 (C)∠1=∠4 (D)∠3=∠4 (3)如图,AB‖CD‖EF, 那么∠BAC+∠ACE+∠CEF=( ) (A) 180°(B)270° (C)360° (D)540° (4)谁问谁答:如图,直线a‖b,如:∠1=54°时,∠2= . 学生提问,并找出回答问题的同学。2.(讨论解答) 如图是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,求梯形另外两角分别是多少度?(五)概括存储(小结)1.平行线的性质1、2、3;2.用“运动”的观点观察数学问题;3.用数形结合的方法来解决问题。
(六)作业 第69页 2、4、7.八、教学反思:①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。在引导学生画图、测量、发现结论后,利用几何画板直观地、动态地展示同位角的关系,激发学生自觉地探究数学问题,体验发现的乐趣。
②学的转变:学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境。
③课堂氛围的转变:整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。
一节初中数学的教学设计搞
课题名称: 完全平方公式(1)一、 内容简介本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。
关键信息:1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。
通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。
2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。二、学习者分析:1、在学习本课之前应具备的基本知识和技能:①同类项的定义。
②合并同类项法则③多项式乘以多项式法则。2、学习者对即将学习的内容已经具备的水平:在学习完全平方公式之前,学生已经能够整理出公式的右边形式。
这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。三、 教学/学习目标及其对应的课程标准:(一)教学目标:1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。
2、会推导完全平方公式,并能运用公式进行简单的计算。(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。
(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。
四、 教育理念和教学方式:1、教师是学生学习的组织者、促进者、合作者:学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。教学是师生交往、积极互动、共同发展的过程。
当学生迷路的时候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。2、采用“问题情景—探究交流—得出结论—强化训练”的模式展开教学。
3、教学评价方式:(1) 通过课堂观察,关注学生在观察、总结、训练等活动中的主动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。(2) 通过判断和举例,给学生更多机会,在自然放松的状态下,揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。
(3) 通过课后访谈和作业分析,及时查漏补缺,确保达到预期的教学效果。五、 教学媒体 :多媒体 六、 教学和活动过程:教学过程设计如下:〈一〉、提出问题[引入] 同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?(2m+3n)2=_______________,(-2m-3n)2=______________,(2m-3n)2=_______________,(-2m+3n)2=_______________。
〈二〉、分析问题 1、[学生回答] 分组交流、讨论(2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,(2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。(1)原式的特点。
(2)结果的项数特点。(3)三项系数的特点(特别是符号的特点)。
(4)三项与原多项式中两个单项式的关系。2、[学生回答] 总结完全平方公式的语言描述:两数和的平方,等于它们平方的和,加上它们乘积的两倍;两数差的平方,等于它们平方的和,减去它们乘积的两倍。
3、[学生回答] 完全平方公式的数学表达式: (a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.〈三〉、运用公式,解决问题1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性) (m+n)2=____________, (m-n)2=_______________, (-m+n)2=____________, (-m-n)2=______________, (a+3)2=______________, (-c+5)2=______________, (-7-a)2=______________, (0.5-a)2=______________.2、判断: ( )① (a-2b)2= a2-2ab+b2 ( )② (2m+n)2= 2m2+4mn+n2( )③ (-n-3m)2= n2-6mn+9m2( )④ (5a+0.2b)2= 25a2+5ab+0.4b2( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2( )⑥ (-a-2b)2=(a+2b)2( )⑦ (2a-4b)2=(4a-2b)2( )⑧ (-5m+n)2=(-n+5m)23、小试牛刀① (x+y)2 =______________;② (-y-x)2 =_______________;③ (2x+3)2 =_____________;④ (3a-2)2 =_______________;⑤ (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;⑦ (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.〈四〉、[学生小结] 你认为完全平方公式在应用过程中,需要注意那些问。
【如何写初中数学教学设计?】
内容可以有以下几块一.基本信息1.课题(教材版本名称、章、节名称)2.作者及工作单位二.教材分析1.课标中对本节内容的要求;本节内容的知识体系;本节内容在教材中的地位,前后教材内容的逻辑关系.2.本节核心内容的功能和价值(为什么学本节内容),三.学情分析1.教师主观分析、师生访谈、学生作业或试题分析反馈、问卷调查等是比较有效的学习者分析的测量手段.2.学生认知发展分析:主要分析学生现在的认知基础(包括知识基础和能力基础),要形成本节内容应该要走的认知发展线.3.学生认知障碍点:学生形成本节课知识时最主要的障碍点.四.教学目标( 教学目标的确定应注意按照新课程的三维目标体系进行分析)五.教学重点和难点六.(教学过程的表述不必详细到将教师、学生的所有对话、活动逐字记录,但是应该把主要教学环节、教师活动、学生活动、设计意图很清楚地再现.)(一)教学环节 (二)教师活动 (三) 预设学生行为 (四) 设计意图七.板书设计(需要一直留在黑板上主板书)八.学生学习活动评价设计设计评价方案,向学生展示他们将被如何评价(来自教师和小组其他成员的评价).另外,也可以创建一个自我评价表,这样学生可以用它对自己的学习进行评价.九.教学反思教学反思可以从以下几个方面思考,不必面面俱到:1.反思在备课过程中对教材内容、教学理论、学习方法的认知变化.2.反思教学设计的落实情况,学生在教学过程中的问题,出现问题的原因是什么,如何解决等,避免空谈出现的问题而不思考出现的原因,也不思考解决方案.3.对教学设计中精心设计的教学环节,尤其是对以前教学方式进行的改进,通过设计教学反馈,实际的改进效果如何.4.如果让你重新上这节课,你会怎样上?有什么新想法吗?或当时听课的老师或者专家对你这节课有什么评价?对你有什么启发?。
初中数学课堂教学板书设计有哪些
初中数学教学设计的常用模式有: 一、“引导——发现”模式 这种模式是数学新课程教学中应用较为广泛的一种教学模式,在教学活动中,教师不是 将现成的知识灌输给学生,而是通过精心设置的一个个问题链,激发学生的求知欲,使学生在老师的引导与合作下,通过自主探索、合作交流、发现问题、解决问题。
这种模式的教学目标是:学习发现问题的方法,培养、提高创造性思维能力。 “引导——发现”模式的教学结构是:创设情境——提出问题——探究猜测——推理验证——得到结论。
(例:探索三角形全等的条件) 二、“活动——参与”模式 这种模式通过教师的引导,学生自主参与数学实践活动,在活动中通过动手探索,参与实践,密切数学与生活实际的联系,掌握数学知识的发生、形成过程和数学建模方法,形成用数学的意识。 在数学教学中,数学活动内容是丰富多彩的,部分数学活动既可在课内进行又可以在课外进行,像问题解决、数学游戏、数学实验。
一般来说,课外活动更重视培养兴趣、提高自学能力和实际操作能力,学习内容受课本的约束也很少。 “活动——参与”模式主要有以下几种形式:①数学调查;②数学实验;③测量活动;④模型制作;⑤数学游戏;⑥问题解决。
这种模式的教学目标是:积极培养学生的主动参与意识,增进师生、同伴之间的情感交流,提高实际操作能力,形成用数学的意识。 该模式一般的教学结构是:创设问题情境——实践活动——合作交流——总结。
(例:用正多边形拼地板) 三、“讨论——交流”模式 这种模式有利于学生积极思维,有助于学生合作学习,因此也是数学新课程教学中常用的一种模式。 这一模式的教学目标是:养成积极思维的习惯,培养批判性思维的能力,培养数学交流的能力和协作能力。
它的特点是,对学习内容通过问题串形式开展讨论,学生积极思考,充分发表自己的意见和看法。通过讨论,交流思想,探究结论,掌握知识和技能。
“讨论——交流”模式一般的教学结构是:提出问题——课堂讨论——交流反馈——小结。(例:完全平方公式) 四、“自学——辅导”模式 “ 自学——辅导”模式是学生在教师的指导和辅导下进行自学、自练和自改作业,从而获得知识,发展能力的一种模式。
在这一模式中,学生通过自学,进行探索、研究,老师则通过给出自学提纲,提供一定的阅读材料和思考问题的线索,启发学生进行独立思考。它的特点是学生的自主性、独立性较强,有利于学生在自学中学会学习,掌握学习方法。
“自学——辅导”模式一般的教学结构是:提出要求——自学——提问——讨论交流——讲解——练习。 以上四个教学模式是数学新课程所提倡的主要教学模式。
同时,我们认为传统的“讲解——传授”模式在数学新课程教学中也并未被抛弃,只不过是用新的教育理念来指导改革其中的一些陈旧的作法而不是对其全盘否定。 五、“讲解——传授”模式 这种教学模式以教师的系统讲解为主脉,教师进行适当的启发引导,促使学生进行积极思考。
这种教学模式主要用于陈述性知识和程序性知识的传授和学习。它有助于学生在短时间内掌握大量知识和形成熟练技能。
“讲解——传授”模式的主要理论依据是凯洛夫教学思想和奥苏贝尔的“有意义的学习”的理论。 这种教学模式能使学生在单位时间内迅速系统地掌握较多的数学基本知识和技能,但在数学教学中,教师采用这种模式最需要关注的是:学生必须有进行对学习材料有意义学习的心向,学生的认知结构中必须有适当的知识与新知识产生联系。
以上几种常见的初中数学教学模式。在选择教学模式时,要明确三点: 1. 最有效的学习应是让学生在体验和创造的过程中进行有意义的学习; 2. 数学课堂教学的关键是学生接受式学习与发展式学习互相补充、合理结合; 3. 数学教学模式不能机械的截然划分,在数学新课程教学中,几种模式可以进行相互渗透与综合。
每一位教师都应认识到,没有可适用于各种情况的教学模式,也没有所谓最好的教学模式。对某一种教学目标、某一类数学教学内容、某一个班学生不一定只有一种教学模式,有多种模式可以选用。
我们必须从教学目标、教学内容、学生的实际情况、教师的特点等诸多方面来考虑,灵活地进行选择与组合,这样才能实现最佳的教学过程。
如何写初中数学教学设计
发布者:陈冬娥 每一位老师都有自己的教学风格和教学方式。
但在强调个性的同时,我们必须努力追求教学过程的科学性。只有科学的教学思路,才能科学地指导教学活动。
初中数学的教学设计的总体思路必须遵循数学课程标准,充分体现课程标准。教学的最根本的出发点必须要放在学生的发展上--“为了学生的发展而教”。
突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:“人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得以不同的发展”。因此, 新课程教学总体思路设计:一要把学生“学”数学放在教师“教”之前,“导”学是教学之重点。
二要把组织学生自主数学学习活动作为老师的主要任务之一,并要担任起活动的指导者。三要着力培养学生科学的数学思想,训练学生的逻辑思维能力。
四是数学基础知识的学习和基本数学能力的训练不能放松。五要实施差异教学,使人人都获得必需的数学,在数学上得到不同的发展。
具体教学内容和教学环节的设计思路要围绕具体教学目标,立足于学生实际情况,结合具体的教学环境等多种因素来进行。要充分发挥教师的主导作用,突破传统教学思路之束缚,大胆创新。
如教学“有理数的意义”,我的设计思路是:(1)从自然数的减法入手,提出问题:大家的掌握的数不够用了!(2)提供一两个实例,指出负数的实际存在及意义,引导学生寻找生活中负数并探究其表示的实际意义。(3)体验有理数。
如果设定向南为正,一步长为单位1,先根据动作说出有理数,再根据有理数做出动作。(4)比较“向南5步”与“向北5步”之异同,我们可以用数学的方式表达吗? 思路(1)在于激起学生求知之欲。
思路(2)在于引导学生理解负数应用的实际意义,引导学生发现生活中的数学。思路(3)、(4)可以让学生进一步感受有理数的意义,体验数学表达方式简洁、明确之特征;理解相反数、绝对值的实际意义;使学生体会学数学可以提高我们的细致的分析问题、解决问题的能力。
教学目标是评价教学活动的标准,因此,教学目标的设计科学性,客观性和可操作性对教学活动程序设计有重要的指导作用。在初中数学课程的具体教学活动中,教师必须主导着学生按预定的教学目标进行,当然,这并不排除根据实际的活动情况临时作必要的调整。
教学目标的设计首先要突出基础目标,数学课程教学的目标包括数学基础知识目标和数学基本能力目标。数学课程教学的基本知识目标和能力的目标具体体现在每一个知识点的教学活动和每一项能力训练活动中,即要明确教学活动中要“学什么”和“练什么”。
与传统教学目标所不同的是:新课程在强调“双基”教学的同时,更突出学生自主探究的学习过程的组织,即要强调学生“怎样学”的设计,而不是“怎样教”的设计。 其次要体现学生数学学习能力和数学思维能力培养目标。
数学新课程标准要实现“不同的人在数学上得到不同的展”的目标,因此,教学目标的设计要具有可拓展性。即每一个教学活动目标设计,既要有定性目标(基础目标),还要有不定性目标(发展目标)。
在学生实现基本目标的基础上,根据不同学生的特征,提出不同的发展目标,力求能够实现每个学生在同一的学习活动中都得到最大的发展。 如“幂的乘方”一节,我的教学目标设计为:(1)、掌握幂的乘方运算法则,能够运用法则准确进行幂的乘方运算。
(2)、通过本节内容的学习过程,培养学生综合运用已知的数学知识探究数学规律来获取新知的意识。(3)、让学生体验从“一般到特殊,再从特殊到一般”的数学思想。
目标(1)是基础目标,要求每个学生必须达到。目标(2)是发展目标,鼓励学生通过自主探索与合作交流后,大部分学生能达到。
目标(3)是给已经具备一定能力的学生提出的,引导学生体验数学知识及其它学科知识都蕴含着的普遍规律性,进而激励学生从诸多的特殊现象中探究一般规律的兴趣。 教学过程的设计:数学教学过程是为实现既定的教学目标而在教师主导下展开的“教”和“学”的双边活动。
教学过程的设计就是具体教学活动步骤的安排,体现着教师的教学思想、教学手段和方法及教学艺术程度。笔者认为教学过程的设计必须首先体现教学目标和实现目标的策略,数学课堂教学的基本结构应当包括“导入--提出问题;探究--思考、研究问题;交流讨论--解决问题;总结--明确问题;实践--应用问题”。
一次教学活动的过程设计要根据教学目标,选定具体的丰富的内容,这包括生活素材、基本练习、典型例题、能力训练题、实践题等。
