• 首页>教育 > 教育
  • 正切诱导公式

    正切函数诱导公式 

    tan(2π+α)=tanα 

    tan(-α) =-tanα 

    tan(2π-α)=-tanα 

    tan(π-α) =-tanα 

    tan(π+α) =tanα 

    三角函数诱导公式

    公式一:设α为任意角,终边相同的角的同一三角函数的值相等

    sin(2kπ+α)=sinα(k∈Z)

    cos(2kπ+α)=cosα(k∈Z)

    tan(2kπ+α)=tanα(k∈Z)

    cot(2kπ+α)=cotα(k∈Z)

    公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系

    sin(π+α)=-sinα

    cos(π+α)=-cosα

    tan(π+α)=tanα

    cot(π+α)=cotα

    公式三:任意角α与-α的三角函数值之间的关系

    sin(-α)=-sinα

    cos(-α)=cosα

    tan(-α)=-tanα

    cot(-α)=-cotα

    公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系

    sin(π-α)=sinα

    cos(π-α)=-cosα

    tan(π-α)=-tanα

    cot(π-α)=-cotα

    公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系

    sin(2π-α)=-sinα

    cos(2π-α)=cosα

    tan(2π-α)=-tanα

    cot(2π-α)=-cotα

    公式六:π/2±α与α的三角函数值之间的关系

    sin(π/2+α)=cosα

    sin(π/2-α)=cosα

    cos(π/2+α)=-sinα

    cos(π/2-α)=sinα

    tan(π/2+α)=-cotα

    tan(π/2-α)=cotα

    cot(π/2+α)=-tanα

    cot(π/2-α)=tanα

    发表评论

    登录后才能评论